Resources

There are many types of flame retardant chemicals that manufacturers may apply to polyurethane foam found in residential furniture – some are a single chemical, and some are specific mixtures of chemicals. Unfortunately, our lab isn’t able to look for all of the possible flame retardant chemicals that could be in your furniture, but we are currently testing for 7 of the most common flame retardants found in more than 85% of the furniture currently on the market!

Below you will find summaries of the 7 Common Flame Retardant Chemicals we’re looking for in the samples submitted to our laboratory. The summaries include links to related websites and documents created by agencies like the EPA and the Agency for Toxic Substances and Disease Registry.

Knowing which flame retardants may be in your furniture is just a first step – reducing exposure to these chemicals is the next step. So how can we reduce how much of these chemicals we come into contact with on a daily basis?

Several studies (such as Stapleton et al, 2008, Frederiksen et al, 2010, and Johnson et al, 2010) have shown that the levels of certain flame retardant chemicals in our bodies are correlated with the amount of flame retardant chemicals in dust in our homes. This suggests that

  1. regularly vacuuming, dusting, and cleaning to remove dust and
  2. washing your hands often (and encouraging or helping children to do the same) may be two very important ways to reduce exposure.

Remember that small children spend more time on the floor (where dust can accumulate) and put their hands and fingers in their mouths more often than older children and adults. This hand-to-mouth contact could be a key source of exposure.

This Duke Research story highlights some recent work on flame retardants and provides useful information on the health effects of flame retardants and this infographic showing what you can do to reduce exposure.

 

7 Common Flame Retardant Chemicals

PentaBDE

PentaBDE is a commercial flame retardant mixture containing brominated chemicals called PBDEs (polybrominated diphenyl ethers). PentaBDE has been used for decades in residential furniture, but due to concerns over their persistence, ability to accumulate in humans, as well as their potential toxicity, the US began a phase-out of pentaBDE in 2005.

For more information on PBDEs, including pentaBDE, read the ToxFAQs summary created by the US Agency for Toxic Substances and Disease Registry.

 

TDCPP

TDCPP, or tris (1,3-dichloro-2-propyl) phosphate, is an organophosphate flame retardant that is being used to replace PentaBDE. TDCPP, which is used as an additive flame retardant in resins, polymers, latexes, and foams, is most widely used in the US (annual estimations are 4,500-22,700 metric tons).[1] There is evidence that TDCPP is a probable carcinogen and a developmental neurotoxicant[2], as well as an endocrine disruptor in fish.

For more information on TDCPP, read

 

Firemaster® 550

Firemaster® 550 (FM 550) is a mixture of brominated and organo-phosphorous flame retardants. It was advertised as a replacement for pentaBDE following its phase-out. Other than some limited testing carried out by the manufacturer, little information on the health effects of Firemaster 550 is available. However, a recent study conducted by researchers at Duke University and NC State found that some of the components in FM 550 bioaccumulate and act as an endocrine disruptor. FM 550 may also cause obesity, metabolic disruption, and increase the onset of puberty.

For more information, read this press release from NC State University on a recent study of Firemaster 550.

 

V6

V6 is a chlorinated organophosphate flame retardant that can contain TCEP as an impurity in the mixture. TCEP is considered a carcinogen.

 

TBPP

TBPP, or Tris-isobutylated triphenyl phosphate, is a mixture organophosphate flame retardants that do not contain halogens (e.g. bromine or chlorine).  About 40% of the TBPP mixture is a chemical called triphenyl phosphate (TPP).  Limited information exists on the health impacts of this mixture, but scientific studies have shown that TPP can have high acute aquatic toxicity.

EPA conducted a risk characterization for TBPP, click here to read their technical document from 2008.

 

MPP Mix

MPP, or methyl phenyl phosphate, is a mixture of organophosphate flame retardants that do not contain halogens (e.g. bromine or chlorine).  Triphenyl phosphate (TPP) is also a primary component in MPP (see above for more information on TPP).  Little information is available on the toxicity and levels of exposure to chemicals found in this mixture.

 

TCPP

 TCPP is very similar in structure to TDCPP (see above) – it’s used as an additive flame retardant in resins, polymers, latexes, and foams, and is most widely used in the US (annual estimations are 4,500-22,700 metric tons).[3] As a relatively new flame retardant additive, little is known about possible health effects.

 


[1] Meeker JD, et al. Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations. Environ Health Perspect 121:580-585. (2013); http://dx.doi.org/10.1289/ehp.1205907

[2] Dishaw LV, et al. Is the PentaBDE replacement, tris (1,3-dichloropropyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol Appl Pharmacol 256(3):281–289. (2011); http://dx.doi.org/10.1016/j.taap.2011.01.005

[3] See first footnote